915 research outputs found

    Institutional Barriers to Technology Diffusion in Rural Africa

    Get PDF
    This paper analyzes the connection between informal insurance institutions in rural Africa and the adoption of new technologies. We model two linked games -- a community risk-sharing game and an old-age insurance game -- and analyze the multiple equilibria that arise. We provide a numerical example that indicates that informal insurance institutions may put a downward pressure on the adoption of new technologies.Research and Development/Tech Change/Emerging Technologies,

    The electrical properties of pure and doped nanocyrstalline cerium oxide

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1997.Includes bibliographical references (p. 41-42).by Erin Baker Lavik.M.S

    Social Information Processing and Emotion Regulation: Relationships with Attachment and Social Competance in At-Risk Preschoolers

    Get PDF
    A thesis presented to the faculty of the College of Science and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Erin R. Baker on July 12, 2011

    Enhancing Osseointegration of Orthopaedic Implants with Titania Nanotube Surfaces

    Get PDF
    Introduction: As joint arthroplasty surgical procedures increase annually, the development of new strategies, including novel materials and surface modifications, to attain solid bone-implant fixation are needed to increase implant terms of service. In this study, we evaluate two morphologies of titania nanotubes in both in vitro and in vivo experiments to quantify osseointegrative potential and material-level biocompatibility. Materials and Methods: Samples were prepared via an electrochemical etching process. Two different titania nanotube (TiNT) morphologies were produced, Aligned and Trabecular. For the in vitro experiment, Sprague Dawley (SD) rat marrow-derived bone marrow cells (BMC) were seeded on samples. Alkaline phosphatase (ALP) activity, osteocalcin (OC) expression, expression of relevant genes as well as cell attachment and morphology were assessed. In the first in vivo experiment, Kirschner wires were implanted unilaterally into SD rat femora with a TiNT-etched or unmodified (Control) implant. General health assessments and weekly body weights were recorded. At a 12-week endpoint, hematologic, systemic metal ion, and histologic analyses were performed. For the second in vivo experiment, Kirschner wires were implanted bilaterally into SD rat femora, with a TiNT-etched implant in one femora and unmodified (Control) implant as an internal control. At 4- and 12-week endpoints, femora were assessed via biomechanics, undecalcified histology, micro-computed tomography (μCT), and backscattered electron imaging (BEI) to characterize de novo bone formation. Results: In vitro experiments demonstrated BMC attachment and differentiation into osteoblasts as well as greater ALP activity, OC expression, total cell counts, and gene expression (of Col1a1, IGF-1, and osteonectin) on TiNT surfaces versus Controls. Cells on TiNT-etched substrates were smaller in diameter and more eccentric than Controls. In the first in vivo experiment, there were significant differences in body weight between groups at Weeks 9 and 11. There were no significant differences in red or white blood cell function between TiNT groups and Control. Aluminum levels in the lungs were significantly greater in the Trabecular TiNT group compared to Control. Histologic analysis showed significantly fewer granulocytes and neutrophils in the distal region of Trabecular TiNT-implanted femora as well as significantly fewer foreign body giant/multinucleated cells and neutrophils in the midshaft region of Aligned TiNT-implanted femora versus Controls. In the second in vivo experiment, at 12 weeks, µCT analysis showed TiNT implants generated greater bone formation than Controls. Histologic analysis demonstrated 1.5 times greater bone-implant contact in TiNT groups than Controls at 12 weeks. TiNT groups exhibited 1.3 to 3.7 times greater strength of fixation than Controls during pull-out testing. Discussion and Conclusions: In vitro data confirmed BMC attachment and differentiation into osteoblasts as well as osteoblastic phenotypic behavior. A clinically-relevant in vivo model of femoral intramedullary fixation, showed increased bone formation and quality in femora implanted with TiNT-etched implants versus Controls. A second in vivo study showed that TiNT surfaces do not generate systemic effects and may beneficially modulate the periprosthetic inflammatory environment

    Finding common ground when experts disagree: robust portfolio decision analysis

    Get PDF
    We address the problem of decision making under “deep uncertainty,” introducing an approach we call Robust Portfolio Decision Analysis. We introduce the idea of Belief Dominance as a prescriptive operationalization of a concept that has appeared in the literature under a number of names. We use this concept to derive a set of non-dominated portfolios; and then identify robust individual alternatives from the non-dominated portfolios. The Belief Dominance concept allows us to synthesize multiple conflicting sources of information by uncovering the range of alternatives that are intelligent responses to the range of beliefs. This goes beyond solutions that are optimal for any specific set of beliefs to uncover defensible solutions that may not otherwise be revealed. We illustrate our approach using a problem in the climate change and energy policy context: choosing among clean energy technology R&D portfolios. We demonstrate how the Belief Dominance concept can uncover portfolios that would otherwise remain hidden and identify robust individual investments
    • …
    corecore